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1 Mathematical Setup for Statistical Mechanics

1.1 Relationship to type counting

Our goal is to set up some mathematical models of physical systems with large numbers
of degrees of freedom and see whether “most microstates look the same” after fixing a few
macroscopic parameters.

To begin with, we will focus on n classical1 non-interacting, identical point particles
moving around in a potential. Non-interacting particles can be thought of as particles
where the energies of interaction are negligible compared to the total energy of the system.

We will describe the particles via their positions r1, . . . , rn ∈ R3 and velocities v1, . . . , vn ∈
R3. Newton’s law says

m
dvi
dt

= m
d2ri
dt

= Fi = −∇V (ri).

We will assume the mass m equals 1, so vi = pi, the momentum. The total energy is

Φ(r1, . . . , rn, p1, . . . , pn) =
n∑
i=1

ϕ(ri, pi), ϕ(ri, pi) = v(ri) +
1

2
|pi|2.

We want to study averages over the set

Ω(n, I) = {(r1, . . . , pn) ∈ (R3)n × (R3)n :
1

n
Φ(r1, . . . , pn) ∈ I = (E − ε, E + ε)}

for some desired total energy E and error tolerance ε.
The first step is to ask: How big is Ω(n, I) in the sense of Lebesgue measure? This is just

an instance of generalized type counting: M = R3×R3, λ = m3×m3, and ϕ : M → [0,∞).
Note that we are assuming V is lower bounded, and we are adjusting it by a constant to
assume its minimum equals 0. Now the asymptotic behavior of

λ×n
({

(r1, . . . , pn) :
1

n
Φ ∈ I

})
= exp

(
n · sup

E∈I
s(E) + o(n)

)
.

1Here, classical means not quantum. You can do this with quantum physics, but it requires making use
of the full machinery of Hilbert spaces.
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To go further, we need to know more about s in the present situation.2

1.2 Assumptions of the model and properties of the entropy

Here are the salient features of the present situation and a necessary assumption:

• (M,λ) is σ-finite but not finite.

• minϕ = 0 = ess minϕ, i.e. λ({(r, p) : ϕ(r, p) < a}) > 0 for all a > 0.

• We need V to confine particles strongly enough to bounded regions of space. Math-
ematically, we will ask that

∫
e−βϕ dλ < ∞ for all β > 0. [Note that

∫
e−βϕ dλ =∫∫

R3×R3 e
−βV e−(β/2)|p|

2
dm3(r) dm3(p).]

3

Under these assumptions, we know that s(E) exists, is upper semicontinuous, concave,
and is s : R→ [−∞,∞). In fact, we also know that s ≡ −∞ on [−∞, 0), so we can focus
on s|[0,∞). In this case, we have our variational formula

s(E) = inf
β
{s∗(β) + βE},

where

s∗(β) = log

∫
e−βϕ dλ.

Note that we have switched y with −β, as β has a physical interpretation.
We will use the formula for s∗ to derive more qualitative features of s. We will set up

ways of translating properties of s∗ into those of s. Here is a picture of s and s∗:

2In this situation, s is 1
n

times the Boltzman entropy.
3Notably, gravity does not satisfy this assumption, but gravity operates on different scales than we are

working with, so we will ignore it.
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For each E, is there a β which achieves the equality s(E) = s∗(β) + βE? The answer
is yes, if and only if s has finite one-sided derivative on at least one side, and then you can
use any D+s(E) ≤ β ≤ D−s(E). In particular, if s′(E) exists, then the unique choice is
β = s′(E).
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